
Chapter 13: I/O Systemsp y

Device Management Objectives

D i Ch t i tiDevice Characterization

Device Interface
ControlControl

Data Transfer

Kernel I/O SubsystemKernel I/O Subsystem
Device Independent Services

Buffering

Streams

Device Drivers

Data Structures

Betriebssysteme WS 09/10

5.13 I/O Systems

5 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device Management Objectivesg j

Abstraction from details of physical devices

U if N i th t d t d d HW d t ilUniform Naming that does not depend on HW details

Serialization of I/O-operations by concurrent applications

Protection of standard-devices against unauthorized
accesses

Buffering, if data from/to a device cannot be stored in the
final destination

Error Handling of sporadic device errors

Virtualizing physical devices via memory and timeVirtualizing physical devices via memory and time
multiplexing (e.g., pty, RAM disk)

Betriebssysteme WS 09/10

5.13 I/O Systems

6 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Characteristics of I/O Devices

Block devices include disk drives
Commands include read write seekCommands include read, write, seek

Raw I/O or file-system access

Memory-mapped file access possibley pp p

Character devices include keyboards, mice, serial ports
Commands include get, put

Libraries layered on top allow line editing

Network devices vary enough from block and character
devices to have own interface

Unix and Windows include socket interface

Separates network protocol from network operationSeparates network protocol from network operation
Includes select functionality

Betriebssysteme WS 09/10

5.13 I/O Systems

7 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Characteristics of I/O Devices

Betriebssysteme WS 09/10

5.13 I/O Systems

8 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device Speedp

Betriebssysteme WS 09/10

5.13 I/O Systems

9 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

9

A Typical PC Bus Structureyp

Betriebssysteme WS 09/10

5.13 I/O Systems

10 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

I/O Hardware

Common components
ControllerController

Port (external connection point)

Bus (daisy chain or shared direct access)(y)

Devices have addresses, used by
Direct I/O instructions (e.g., to access x86 I/O ports)

Memory-mapped I/O

Device addresses typically point to
Status register

Control register

Data in registerData-in register

Data-out register

Betriebssysteme WS 09/10

5.13 I/O Systems

11 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device I/O Port Locations on PCs (partial)

Betriebssysteme WS 09/10

5.13 I/O Systems

12 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Memory-Mapped I/O (1)y pp ()

 Separate I/O-address space and memory address space
 MOV R0, 4 // <4> → R0
 IN R0, 4 // <port 4> →R0

 Memory mapped I/O // 1 common physical AS Memory-mapped I/O // 1 common physical AS
 Hybrid (Pentium) // part of I/O space in memory

// part in an extra address space

Betriebssysteme WS 09/10

5.13 I/O Systems

13 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

// part in an extra address space

Memory-Mapped I/O (2)y pp ()

(a) Single-bus architecture

(b) D l b hit t
Betriebssysteme WS 09/10

5.13 I/O Systems

14 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

(b) Dual-bus memory architecture

Techniques for I/O-Managementq g

P d I/OProgrammed I/O
thread is busy-waiting for the I/O-operation to complete,
processor cannot be used else wherep

Interrupt-driven I/O
I/O-command is issued
processor continues executing instructions
I/O-device sends an interrupt when I/O-command is done

Di t M A (DMA)Direct Memory Access (DMA)
DMA module controls exchange of data between main
memory and I/O devicey
processor interrupted after entire block has been transferred
bypasses CPU to transfer data directly between I/O device
and memory

Betriebssysteme WS 09/10

5.13 I/O Systems

15 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

and memory

Polling vs. Interruptsg p

Polling determines state of device with busy-wait
l t it f I/O f d icycle to wait for I/O from device
command-ready

busybusy

Error

CPU Interrupt-request line triggered by I/O deviceCPU Interrupt request line triggered by I/O device
Interrupt handler receives interrupts

Maskable to ignore or delay some interrupts

Some nonmaskable

Interrupt vector to dispatch interrupt to correct handler
based on prioritybased on priority

Can be executed at almost any time
Raise (complex) concurrency issues in the kernel

Betriebssysteme WS 09/10

5.13 I/O Systems

16 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Interrupt mechanism also used for exceptions

Intel Pentium Processor Event-Vector Table

Betriebssysteme WS 09/10

5.13 I/O Systems

17 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Interrupt-Driven I/O Cyclep y

Betriebssysteme WS 09/10

5.13 I/O Systems

18 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Steps for Handling an Interruptp g p

1. Save registers not already saved by HW-interrupt
mechanismmechanism

2. Set up context (address space) for interrupt service
procedure

Typically, handler runs in the context of the currently running
process/task not that expensive context switch

3. Set up stack for interrupt service procedurep p p
Handler usually runs on the kernel stack of the current
process/kernel-level thread
Handler cannot block otherwise the unlucky interruptedHandler cannot block, otherwise the unlucky interrupted
process/kernel-thread would also be blocked, might lead to
starvation or even to a deadlock

4 Acknowledge/mask interrupt controller thus re-enable4. Acknowledge/mask interrupt controller, thus re-enable
other interrupts

Betriebssysteme WS 09/10

5.13 I/O Systems

19 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

19

Steps for Handling an Interrupt IIp g p

5. Run interrupt service procedure
A k l d i t t t d i l lAcknowledges interrupt at device level
Figures out what caused the interrupt, e.g.

Received a network packet
Disk read has properly finished, …

If needed, it signals the blocked device driver

6 In some cases we have to wake up a higher priority6. In some cases, we have to wake up a higher priority
process/kernel level thread

Potentially schedule another process/kernel-level thread
Set up MMU context for process to run next

7. Load new/original process' registers
8 Return from Interrupt start running new/original process8. Return from Interrupt, start running new/original process

Betriebssysteme WS 09/10

5.13 I/O Systems

20 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Six Step Process to Perform DMA Transfer

Betriebssysteme WS 09/10

5.13 I/O Systems

21 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

DMA Transfer with Fly-By Modey y

Word Mode (→ cycle stealing)
Burst Mode

Betriebssysteme WS 09/10

5.13 I/O Systems

22 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

22

I/O System Organizationy g

Application

API

Device Independent I/O Subsystem
(e.g. File System)

Device Driver

Hardware Interface

Command DataStatus

Hardware Interface

Betriebssysteme WS 09/10

5.13 I/O Systems

23 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Command DataStatus

Application I/O Interfacepp

I/O system calls encapsulate device behaviors in generic
classesclasses

Device-driver layer hides differences among I/O controllers
from kernelfrom kernel

Devices vary in many dimensions
Character-stream or blockC

Sequential or random-access

Sharable or dedicated

Speed of operation

read-write, read only, or write only

Betriebssysteme WS 09/10

5.13 I/O Systems

24 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

A Kernel I/O Structure

Betriebssysteme WS 09/10

5.13 I/O Systems

25 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Kernel I/O Subsystemy

Scheduling
Some I/O request ordering via per device queueSome I/O request ordering via per-device queue

Some OSs try fairness

Buffering - store data in memory while transferring betweenBuffering store data in memory while transferring between
devices

To cope with device speed mismatch

To cope with device transfer size mismatch

To maintain “copy semantics”

Error Handling
OS can recover from disk read, device unavailable, transient write
failuresfailures

Most return an error number or code when I/O request fails

System error logs hold problem reports

Betriebssysteme WS 09/10

5.13 I/O Systems

26 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Kernel I/O Subsystemy

Protection
User process may accidentally or purposefully attempt to disruptUser process may accidentally or purposefully attempt to disrupt
normal operation via illegal I/O instructions

I/O must be performed via system calls

Memory-mapped and I/O port memory locations must be
protected too

SpoolingSpooling
Hold output for a device, if device can serve only one request at a
time (i.e., Printing)(, g)

Device reservation - provides exclusive access to a device
System calls for allocation and deallocation

Watch out for deadlock

Betriebssysteme WS 09/10

5.13 I/O Systems

27 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

I/O Software Summaryy

Layers of I/O system and main functions of each layer

Betriebssysteme WS 09/10

5.13 I/O Systems

28 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

28

Layers of I/O system and main functions of each layer

Device-Functionality Progressiony g

Betriebssysteme WS 09/10

5.13 I/O Systems

29 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Layers of I/O Software Systemy y

Betriebssysteme WS 09/10

5.13 I/O Systems

30 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

30

Device-Independent I/O Software (1)p ()

There is some commonality between drivers of
similar classes

Divide I/O software into device-dependent and p
device independent I/O software, e.g.

Buffer or buffer-cache management, i.e. provide g , p
a device-independent block size

Allocating and releasing dedicate devicesAllocating and releasing dedicate devices

Error reporting to upper levels, i.e. all errors the
driver cannot resolvedriver cannot resolve

Betriebssysteme WS 09/10

5.13 I/O Systems

31 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device-Independent I/O Software (2)p ()

Driver Kernel Interface

Uniform interface to devices and kernel
Uniform device interface for kernel code

Allows different devices to be used in the same way, e.g.
no need to rewrite your file-system when you are switching
from IDE to SCSI or even to RAM disksfrom IDE to SCSI or even to RAM disks

Allows internal changes of drivers without fearing of
breaking kernel code

Uniform kernel interface for device code
Drivers use a defined interface to kernel service, e.g.
k ll i t ll IRQ h dl tkmalloc, install IRQ handler, etc.

Allows kernels to evolve without breaking device drivers

Betriebssysteme WS 09/10

5.13 I/O Systems

32 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

I/O Bufferingg

Reasons for buffering
Otherwise threads must wait for I/O to complete beforeOtherwise threads must wait for I/O to complete before
proceeding
Pages must remain in main memory during physical I/O

Block-oriented
information is stored in fixed sized blocks
t f d bl k t titransfers are made a block at a time
used for disks and tapes

Stream-orientedStream-oriented
transfer information as a stream of bytes
used for terminals, printers, communication ports, mouse, and
most other devices that are not secondary storage

Betriebssysteme WS 09/10

5.13 I/O Systems

33 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

No Bufferingg

Process reads/writes a device a byte/word at a
titime

Each individual system call adds significant overhead

Process must wait until every I/O is complete

Blocking/interrupt handling/unblocking adds to overhead

Many short CPU phases are inefficient, because
overhead induced by thread_switch

h d TLBpoor cache and TLB usage

Betriebssysteme WS 09/10

5.13 I/O Systems

34 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

User Level Buffering

Operating System User Process

User Level Buffering

I/O Device
In

No buffering in OS

Task specifies a memor b ffer that incoming data isTask specifies a memory buffer that incoming data is
placed in until it fills

Filling can be done by interrupt service routineFilling can be done by interrupt service routine

Only one system_call and block/unblock per data buffer
More efficient than “NO BUFFERING”

Betriebssysteme WS 09/10

5.13 I/O Systems

35 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

User Level Bufferingg

Issues
What happens if buffer is currently paged out to disk?

You may loose data while buffer is paged in

Y ld l k/ i thi b ff (d d f DMA) hYou could lock/pin this buffer (needed for DMA), however,
you have to trust the application programmer, that she/he
is not starting a denial of service attackg

Additional problems with writing?
When is the buffer available for re-use?When is the buffer available for re use?

Betriebssysteme WS 09/10

5.13 I/O Systems

36 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

36

Single Buffer

Operating System User Process

In Move

g

I/O Device In Move

Single buffering

U P bl k f d t hilUser Process can process one block of data while
next block is read in
Swapping can occur since input is taking place inSwapping can occur since input is taking place in
system memory, not user memory
OS keeps track of assignment of system buffers toOS keeps track of assignment of system buffers to
user processes

Betriebssysteme WS 09/10

5.13 I/O Systems

37 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Single Bufferg

Stream-oriented
Buffer is an input line at time with carriage return
signaling the end of the line

Block-oriented
Input transfers made to system bufferpu a s e s ade o sys e bu e

Buffer moved to user space when needed

Another block is read into system bufferAnother block is read into system buffer

Betriebssysteme WS 09/10

5.13 I/O Systems

38 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Single Buffer Speed Upg p p

Performance Model:
T = transfer time from device

C = copying time from system- to user-buffer

P = processing time of complete buffer content

Processing and transfer can be done in parallel

Potential speed up with single buffering:

T + P

max{T, P} + C

What happens if system buffer is full, user buffer is
s apped o t and more data is recei ed?swapped out, and more data is received?

Loose characters or drop network packets

Betriebssysteme WS 09/10

5.13 I/O Systems

39 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Double Buffer

Operating System User Process

I/O Device In Move

Use 2 system buffers instead of 1 (per user process)

User process can write to or read from one buffer

while the OS empties or fills the other buffer
Speed up with double buffering:

T + P
max{T, P+C}

Betriebssysteme WS 09/10

5.13 I/O Systems

40 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Timing Diagram for Double Bufferingg g g

time

CPU

I/O

A l i Th l I/O d i i b th h l i t i d Analysis: The slower I/O-device is busy the whole input-period,
thus additional buffers are not needed (in this case).

Betriebssysteme WS 09/10

5.13 I/O Systems

41 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Circular Bufferingg

Double buffering may be insufficient for really
b t t ffi it tibursty traffic situations:

Many writes between long periods of computations

Long periods of computations while receiving data

Might want to read ahead more than just a single block
f di k O ti S t U T kfrom disk

In Move

Operating System User Task

I/O Device .
.

Single-, double-,and circular-buffering are all Bounded

Betriebssysteme WS 09/10

5.13 I/O Systems

42 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Buffer Producer-/Consumer Problems

Device Driver

Device Driver

Drivers classified into similar categories
Block devices andBlock devices and

Character (stream of data) devices

OS defines standard (internal) interface to the
different classes of devices

Device drivers job
Translate user request through device-independent
standard interface, e.g. open, read, …, close) into
appropriate sequence of device or controller commands
(register manipulation)(g p)

Initialize HW at boot time

Shut down HW

Betriebssysteme WS 09/10

5.13 I/O Systems

43 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

© 2009 Universität
43

Device Driver

Device Driver

After issue the command to the device, device
eithereither

completes immediately and the driver simply
returns to the caller or itreturns to the caller or it
processes request and the driver usually blocks
waiting for an I/O (complete) interrupt signalg (p) p g

Drivers are reentrant as they can be called by
another process while a process is already p p y
blocked in the driver

Reentrant: code that can be executed by more than
th d (CPU) t th tione thread (or CPU) at the same time

Manages concurrency using synch primitives

Betriebssysteme WS 09/10

5.13 I/O Systems

44 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

© 2009 Universität
44

Life Cycle of An I/O Requesty q

Betriebssysteme WS 09/10

5.13 I/O Systems

45 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Kernel Data Structures

Kernel keeps state info for I/O components, including open
file tables network connections character device statefile tables, network connections, character device state

Many many complex data structures to track buffersMany, many complex data structures to track buffers,
memory allocation, “dirty” blocks

Some use object-oriented methods and message passing
to implement I/O

Betriebssysteme WS 09/10

5.13 I/O Systems

46 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

UNIX I/O Kernel Structure

Betriebssysteme WS 09/10

5.13 I/O Systems

47 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

Device-status Table

Betriebssysteme WS 09/10

5.13 I/O Systems

48 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

STREAMS

STREAM – a full-duplex communication channel between
a user-level process and a device in Unix System V anda user-level process and a device in Unix System V and
beyond

A STREAM consists of:

- STREAM head interfaces with the user processSTREAM head interfaces with the user process

- driver end interfaces with the device

- zero or more STREAM modules between them.

Each module contains a read queue and a write queue

Message passing is used to communicate between queues

Betriebssysteme WS 09/10

5.13 I/O Systems

49 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

The STREAMS Structure

Betriebssysteme WS 09/10

5.13 I/O Systems

50 11.01.2010 © 2009 Karlsruhe Institute of Technology, System Architecture Group
Frank Bellosa, Gerd Liefländer, Silberschatz et al.

